Sie sind nicht angemeldet

Machine learning for mere mortals: It ain’t magic


Dozent/in Dr. rer. pol. Markus Johannes Meierer; Patrick Bachmann, MA
Veranstaltungsart Vorlesung
Code HS191581
Semester Herbstsemester 2019
Durchführender Fachbereich Wirtschaftswissenschaften
Studienstufe Bachelor Master
Termin/e Fr, 18.10.2019, 08:15 - 12:00 Uhr, HS 10
Sa, 19.10.2019, 08:15 - 12:00 Uhr, HS 5
Fr, 25.10.2019, 08:15 - 12:00 Uhr, HS 10
Sa, 26.10.2019, 08:15 - 12:00 Uhr, HS 5
Umfang 2 Semesterwochenstunden
Turnus blocked
Inhalt Machine learning has become one of the core pillars of information technology. Since the amount of available data is steadily increasing, smart data analysis will become more and more important in the future. This course introduces (supervised) machine learning techniques in a hands-on way with integrated exercises. The distinction between supervised/unsupervised/reinforcement learning, sampling and cross-validation, performance evaluation, logistic regression, deci-sion trees, random forest, support vector, machines, deep learning, and ensemble methods are among the topics to be discussed in this course.
Lernziele - Get familiar with the concept of (supervised) machine learning.
- Understand the basic theory behind various machine learning techniques.
- Apply different machine learning techniques and interpret the results.

Voraussetzungen - Bring a laptop (with the latest operating system version installed).
- Updated installation of R (https://cran.r-project.org/)
- Updated installation of Rstudio (https://www.rstudio.com/
Sprache Englisch
Anmeldung To attend the course / exercise, enrolment via the e-learning platform OLAT is required. Registration is possible from 2 to 27 September 2019. The students themselves are responsible for checking the creditability of the course to their degree programme. Direct link to the OLAT course: https://lms.uzh.ch/url/repositoryentry/16616980739
Leistungsnachweis Multiple-choice tests, online exercises, group work
Abschlussform / Credits Multiple-choice tests, online exercises, group work / 3 Credits
Hörer-/innen Ja
Kontakt markus.meierer@uzh.ch