Sie sind nicht angemeldet

Supervised Machine Learning


Dozent/in Dr. rer. publ. Massimo Mannino
Veranstaltungsart Vorlesung
Code HS201568
Semester Herbstsemester 2020
Durchführender Fachbereich Wirtschaftswissenschaften
Studienstufe Master
Termin/e Fr, 16.10.2020, 08:15 - 14:00 Uhr, ZOOM
Fr, 30.10.2020, 08:15 - 14:00 Uhr, ZOOM
Fr, 13.11.2020, 08:15 - 14:00 Uhr, ZOOM
Fr, 11.12.2020, 08:15 - 12:00 Uhr, ZOOM
Umfang 2 Semesterwochenstunden
Turnus blocked
Zoom Live Stream + Podcasts
Inhalt The lecture familiarizes students with a wide range of models in the field of Supervised Machine Learning. The course will focus on practical machine learning applications and teach data science techniques that enable students to solve real-world problems from the business world. By means of R, students will learn to estimate and visualize model results and communicate results efficiently. The integrated exercises discuss application examples from business administration and economics.
Lernziele 1) Students can independently prepare and analyze data.
2) Students can apply methods in the field of Supervised Machine Learning.
3) Students are able to visualize model results with R.
4) Students can communicate model results effectively.
Voraussetzungen Solid knowledge in econometrics and statistics.
Sprache Englisch
Begrenzung 24 Teilnehmer
Anmeldung To attend the course / exercise, registration via e-learning platform OLAT is required. Registration is possible from August, 31 to September 25, 2020. The students themselves are responsible for checking the creditability of the course to their course of study. Direct link to OLAT course: https://lms.uzh.ch/url/repositoryentry/16800973072
Prüfung ***IMPORTANT*** In order to acquire credits, resp. to take the examination, registration via the Uni Portal within the examination registration period is ESSENTIALLY REQUIRED. Further information on registration: www.unilu.ch/wf/pruefungen
Abschlussform / Credits Schriftliche Arbeit & Referat/Vortrag / 3 Credits
Hörer-/innen Nach Vereinbarung
Kontakt massimo.mannino@doz.unilu.ch
massimo.mannino@novalytica.com
Anzahl Anmeldungen 7 von maximal 24
Literatur An Introduction to Statistical Learning with Applications in R (Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani). Kostenlos verfügbar: http://www-bcf.usc.edu/~gareth/isl/