Termin/e |
Di, 20.09.2022, 10:15 - 12:00 Uhr, 4.B46 Di, 27.09.2022, 10:15 - 12:00 Uhr, HS 12 Di, 27.09.2022, 08:15 - 10:00 Uhr, HS 12 Di, 04.10.2022, 10:15 - 12:00 Uhr, HS 12 Di, 11.10.2022, 10:15 - 12:00 Uhr, HS 12 Di, 11.10.2022, 08:15 - 10:00 Uhr, HS 12 Di, 18.10.2022, 10:15 - 12:00 Uhr, HS 12 Di, 25.10.2022, 10:15 - 12:00 Uhr, HS 12 Di, 25.10.2022, 08:15 - 10:00 Uhr, HS 12 Di, 08.11.2022, 10:15 - 12:00 Uhr, HS 12 Di, 08.11.2022, 08:15 - 10:00 Uhr, HS 12 Di, 15.11.2022, 10:15 - 12:00 Uhr, HS 12 Di, 22.11.2022, 10:15 - 12:00 Uhr, HS 12 Di, 22.11.2022, 08:15 - 10:00 Uhr, HS 12 Di, 29.11.2022, 10:15 - 12:00 Uhr, HS 12 Di, 06.12.2022, 10:15 - 12:00 Uhr, HS 12 Di, 06.12.2022, 08:15 - 10:00 Uhr, HS 12 Di, 13.12.2022, 10:15 - 11:45 Uhr, HS 12 (Prüfung) |
Inhalt |
This course provides an overview of common machine learning approaches with an emphasis on approaches that are of high relevance to marketing research and management. The course contains the following blocks:
1) Introduction to machine learning in marketing 2) Marketing data collection and management for machine learning approaches 3) Supervised learning fundamentals 4) Unsupervised learning fundamentals 5) Recommender systems 6) Introduction to deep learning 7) Computer Vision and natural language processing 8) Generative models
These parts will be thought both conceptually and in the form of hands-on exercises. We will exclusively work with Python throughout this course. |