Sie sind nicht angemeldet

Analysing and Forecasting Economic Time Series


Dozent/in Dr Rolf Scheufele
Veranstaltungsart Vorlesung
Code HS221250
Semester Herbstsemester 2022
Durchführender Fachbereich Wirtschaftswissenschaften
Studienstufe Master
Termin/e Mi, 21.09.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 28.09.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 05.10.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 12.10.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 26.10.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 02.11.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 09.11.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 16.11.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 23.11.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 30.11.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 07.12.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 14.12.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 21.12.2022, 16:15 - 18:00 Uhr, 3.B47
Mi, 04.01.2023, 16:15 - 17:45 Uhr, HS 5 (Prüfung)
Umfang 2 Semesterwochenstunden
Turnus weekly
Inhalt

The course develops a comprehensive set of tools and techniques for analyzing time series in economics and finance. The methods will be applied to forecasting problems and other empirical questions by using available datasets. The course teaches how to use a statistical software (mainly R) to apply these methods. The following topics are covered: Exploring and visualizing time series, univariate time series models (e.g. ARIMA models), multivariate time series models (e.g. ARDL, VAR and ECM models), point and interval forecasting, forecast evaluation.

Lernziele The objective of the course is to give students a good understanding of the concepts and the tools in time series analysis. Students will learn to specify and to estimate time series models as well as to generate forecasts. They will be able to conduct their own real-world application by using a statistical software package (mainly R).
Voraussetzungen Solid knowledge in statistics and econometrics is necessary. Basic programming skills (knowledge of R or similar programs) are highly recommended.
Sprache Englisch
Anmeldung

To attend the course / exercise, registration via e-learning platform OLAT is required. Registration is possible from 5 - 30 September 2022. The students themselves are responsible for checking the creditability of the course to their course of study.

Direct link to OLAT course:

https://lms.uzh.ch/url/RepositoryEntry/17250386169

Prüfung ***IMPORTANT*** In order to acquire credits, resp. to take the examination, registration via the Uni Portal within the examination registration period is ESSENTIALLY REQUIRED. Further information on registration: www.unilu.ch/wf/pruefungen
Abschlussform / Credits Graded examination / 3 Credits
Hörer-/innen Nach Vereinbarung
Kontakt rolf.scheufele@snb.ch